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Abstract

Hydrostatic level measurement systems (HLMSs), applied to pressure vessels, loose their reliability during
transient processes, if the depressurization of water that absorbed a certain amount of gases at high pressure
initiates bubble formation and movement through the liquid in these systems. To simulate and predict the e�ect of

migrating bubbles on the reliability of HLMS, a model was proposed taking bubble formation, motion and mass
di�usion of dissolved multi-component gases through the supersaturated liquid into consideration. The one-
dimensional ¯ow model, which described the two-phase ¯ow in tubes (5±10 mm) by use of Eulerian and Lagrangian

coordinate systems, was applied to bubbly and slug ¯ow through arbitrary inclined tubes without junctions. A
transition criterion between the two ¯ow regimes was de®ned. A homogenous nucleation model with pressure,
temperature and ¯uid properties as parameters was developed for gas-in-liquid solions. The mass transfer rate by

gas di�usion from the supersaturated liquid into the formed bubbles was calculated by numerical solution of an
introduced di�erential equation. The quality of the proposed model was examined by the simulation of an
experimental series where a binary gas±liquid solution was depressurized under variation of saturation pressure,
release velocity and tubing geometry. The behavior of the water level, bubble size and velocity was observed by use

of needle probes and a conductive sensor. The simulated data found con®rmation by the experimentally obtained
results. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

For many applications in nuclear and chemical
industries, the ¯uid level in pressurized vessel has to be
measured. Therefore, the hydrostatic pressure at the

bottom of the vessel is compared to the pressure of a
liquid column with known level (Hydrostatic Level
Measurement System HLMS). For practical consider-

ations (the usual case of approximately the same tem-

perature in both systems and su�cient slow

transients), HLMS is characterized by a linear depen-
dency from the liquid level to the measured pressure
di�erence. Due to its simplicity this measuring prin-
ciple is used in a wide range of applications.

If the system pressure drops suddenly, that might
be caused by release of an overpressure valve or by
a pipe rupture, possibly dissolved gases in the liquid

phase nucleate and form bubbles which are acceler-
ated by the gravitational force and traverse through
the tubing system. The interaction of formation,

moving, coalescence and separation of the bubbles
characterizes this process. Furthermore, a di�usion
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of the solved (multi-component) gaseous phase from

the supersaturated liquid into the bubbles takes

place.

It is obvious that the local pressure inside the

tube alters or even an unknown volume of liquid is

pushed out of the system when the expanding

multi-phase mixture exceeds the limits of the facility.

In any case the applicability of HLMS is lost.

So it is of practical interest to predict the beha-

vior of a liquid column during pressure drops with

the aim to use the simple principle of HLMS, but

be aware of the limitations and the degree of uncer-

tainty in the case of accidental operation.

The proposed model will be able to simulate the

required information. Previous work was realized at

the University of Applied Science, Zittau/Goerlitz,

Germany, where depressurization tests for practically

used con®gurations of HLMS were carried out.

Nomenclature

A area (m2)
c relative velocity (m/s)
cW drag coe�cient

D diameter (m)
f friction factor
K constant

L length (m)
m mass (kg)
M molar mass (kg/kmol)

n bubble density (1/m3)
N bubble number
p pressure (Pa)
R radius (m)

T temperature (8C)
u velocity (m/s)
V volume (m3)

x molar concentration (kmol/kmol)
y coordinate normal to surface (m)
z length coordinate (m)

Z integral length coordinate (m)
Zn real gas coe�cient
hei area averaged void fraction

D di�erence, general
G mass ¯ow (kg/s)
O relaxation coe�cient
a tube's inclination (8)
d ®lm thickness (m)
e volumetric void fraction
t time (s)

ti interfacial stress (Pa)
tw wall stress (Pa)
x mass concentration (kg/kg)

D di�usion constant (m2/s)
CH Henry constant (Pa)
Mn molar mass of n (kg/kmol)
Rn speci®c gas constant of n (kJ/kgK)

Z dynamic viscosity (Pa s)
n kinematic viscosity (m2/s)
r speci®c weight (kg/m3)

s surface tension (N/m)

Subscripts
acc acceleration

B bubble
C conduit
CV control volume

equi equilibrium
f friction
form form

G gas
H Henry
in added
j present element

j + 1 following element
j ÿ 1 preceding element
L liquid

lam laminar
LCV liquid control volume
LG direction from liquid into gas

max maximum
out removed
sphere spherical bubble or concerning nose of a

plug
T Taylor bubble
TPCV two-phase control volume
turb turbulent

x component in x
y component in y
z component in z

n gas phase 1, 2

Superscripts

0 Lagrangian coordinate
± average
i interface
k present calculation step

k + 1 next calculation step
k ÿ 1 former calculation step
w wall
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2. Theoretical background

The depressurization of a saturated gas±liquid sol-
ution is governed by three mechanisms: formation of
bubbles by nucleation, migration of these formed

bubbles through the containing tubing system and
mass transfer of the absorbed gas from the liquid into
the bubbles due to concentration gradients from the

saturated interface to the supersaturated liquid. These
mechanisms are dependent on each other but can be
formulated separately in a nucleation, a ¯ow and a dif-

fusion model.

2.1. Flow model

The proposed model is one-dimensional and suitable
for a time-dependent simulation of bubble and slug
¯ow in thin tubes. The liquid phase is treated as

incompressible and observed through an Eulerian
framework. Bubbles are modeled compressible, as mi-
grating objects carrying their individual Lagrangian

coordinate base. Since tubes of industrial applied
HLMS are thin in diameter (about 8 mm), single
bubbles are supposed to ®ll almost all of the cross sec-

tional area so that at an observed point of the tube's
length coordinate z, only one bubble can exist. So it
becomes possible to distinguish between tube-zones
which are only occupied with liquid, further referred as

liquid control volumes (LCVs), and zones which con-
tain either a slug or a bubble, further referred as two-
phase control volumes (TPCVs).

In general, control volumes are de®ned as a tube
section limited by the wall surface and two parallel

planes as illustrated in Fig. 1.
From Fig. 1, it can be seen that the normal vector

of these planes have the direction of the length coordi-

nate z. At the position of the lowest z-value, a Lagran-
gian coordinate system {ez} is de®ned. This coordinate
base includes, apart from the spatial coordinate, infor-

mation about volumetric- and sectional cross-averaged
properties of the CV �e, rL, rG, uL, uG, L, GLG, FR

i ,
FR

w, @p�L�=@z, @p�G�=@z� concentrated in the property

vector Z.
Furthermore, an imaginary plane, which may have

an arbitrary position between the z-values of the
planes de®ning the CV, is introduced. This introduc-

tion is necessary for numerical purpose: the demand to
simulate tubing systems without junctions but with sec-
tors of di�erent inclinations yields that a moved con-

trol volume has to pass these transition points between
one and another tubing-sector. It directly follows that
two components of the gravational force act on di�er-

ent parts of one control volume. By use of the imagin-
ary plane, which is ®xed in the point of the
geometrical singularity, the original control volume is

divided into two pseudo-control volumes. In each of
them the gravity force is constant and the equation of
conservation can be integrated separately. Generally,
there is the possibility to de®ne more than one of such

planes and integrate over the resulting pseudo-control
volumes. This is necessary if a very long control
volume occupies more than one point of geometrical

singularity. The usefulness in the case of long plugs is
the object of further investigation. For the present cal-
culation such bubbles never appeared.

2.1.1. Equations of conservation
The equations of conservation were derived under

the assumption of an isothermal process. The set
reduces to the balances of mass and momentum for

each phase. Similar equations are referred to [1,3±5].
The equations of conservation are de®ned separately
for each type of control volume. Each phase is

balanced.
Assumptions were made as follows: the density of

the phases and the void fraction are volume-averaged;

the pressure is averaged over the cross section but var-
ies over the length coordinate z. The cross section is
considered as no function of z (i.e., constant diameter).

The in¯uence of mass transfer (di�usion from dis-
solved gases into the bubble) is only re¯ected in the
equation of momentum conservation, not in the
equation of mass conservation.

Equation of mass conservation for LCV:

@L

@t
� @

@z
�uLL� � 0 �1�

Fig. 1. Two-phase control volume TPCV. The Lagrangian

basis posed by the vector Z and some geometrical de®nitions

are illustrated.
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Equation of momentum conservation for LCV:

@

@t
�uLL� � @

@z
�uLuLL� � L

rL

@pL, f

@z
� Lgsin a � 0 �2�

Equation of mass conservation for the gaseous phase
of TPCV:

@

@t
�
erGL

�� @

@z

�
erGuGL

�� GLG

Ac

� 0 �3�

Equation for mass conservation for the liquid phase of
TPCV:

@

@t

��1ÿ e�rLL
�� @

@z

��1ÿ e�rLuLL
�ÿ GLG

Ac

� 0 �4�

Equation of momentum conservation for the gaseous

phase of TPCV:

@

@t
�
erGuGL

�� @

@z

�
erGuGuGL

�� eL
@p�G�
@z

� erGLgsin a� Fi
f, LF

Ac

� GLG

Ac
�uL ÿ uG � � 0

�5�

Equation of momentum conservation for the liquid
phase of TPCV:

@

@t

��1ÿ e�rLuLL
�� @

@z

��1ÿ e�rLuLuLL
�

� �1ÿ e�LG

@p�L�
@z

� �1ÿ e�rLLg sin a

ÿ Fi
f, LF

Ac

� FW
f, LF

Ac

ÿ GLG

Ac
�uL ÿ uG � ÿ Fdrag±sphere

Ac

� 0

�6�

It is noteworthy that the equations of mass conserva-
tion are obtained by volume averaging (and so describ-
ing the integral behavior of the control volume), but
the equations of momentum conservation are based on

averaging over the cross section. So it became possible
to implement distinctive pressure loss models.

The set of equations is also characterized by depen-
dencies among variables of interfacial force FRi, mass

exchange between the phases GLG and pressure gradi-
ent in the liquid phase @pL=@z:
If it is taken into consideration that alternating

types of CVs represent the whole column, it is possible
to show that a moving bubble displaces a speci®c
volume of liquid per unit time as illustrated in Fig. 2.

The dependency between the rising velocity of the
bubble, its void fraction and the velocity of the liquid
can be correlated. This results in an enormous simpli®-

cation of the set of di�erential equations:

uI, j �
uL, j�1 ÿ heijuG, j

1ÿ heij
1uL, j�1 ÿ uG, j

1ÿ heij
1 uG, j

1ÿ heij
�7�

In view of this, a momentum balance is reached by
combination of Eqs. (5) and (6) and by use of the kin-

ematic correlation (7) representing the dynamic beha-
vior of both phases for high volumetric void fraction
in a TPCV and near stagnant ¯uid ¯ow. The obtained

Eq. (8) is based on the velocity of the gaseous phase.
This is of particular interest for implementation,
because from the solution of Eq. (8) the velocity of the

liquid phase can be calculated directly by use of the
kinematic correlation (7). The combined equation of
momentum conservation for a TPCV can be written in
discreet form:

uk�1G, j : �
"
mk

G, ju
k
G, j ÿ

mk
G, j

rkG, j

�
@pL, f

@z

�k

j

�mk
G, j

�
1ÿ rL

rkG, j

�
gsin a

#
Dt

Kk
Dyn

mk�1
G, j

ÿ
hÿ
Fi

f

�k
j �Gk

LGj

�
ukG, j ÿ uÿ1L, j

�
� Fk

Dragj

i
Dt

Kk
Dyn

mk�1
G, j

�8�

where

mk
G, j: � rkG, j

"� � �
�VG �

dV

#k

j

; �9a�

The dynamic coe�cient KDyn, used in Eq. (8), can
be obtained, if the equations of momentum conserva-

tion of gaseous (5) and liquid phase (6) are compared
and terms of lower order are neglected. The ratio of
the so reached expression di�ers from Eq. (5) by a

constant factor. This coe�cient is expressed by Eq.
(11) and might be understood as the ratio between the
reaction on a de®ned force by an independent gaseous

phase compared to the reaction on the same force by
the kinematic coupled two-phase mixture inside the
TPCV.

Fig. 2. A traversing plug displaces liquid with a relative vel-

ocity of uLj�1 ÿ uGj:
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KDyn: �
ekj r

k
G, j

rL

�9b�

The obtained set of equations is characterized by 5
(LCV) and 11 (TPCV) unknown variables, whereas 2

(LCV) and 4 (TPCV) balance equations are available.
In the following section constitutive equations will be
proposed to close the problem.

2.1.2. Constitutive equations
The set of constitutive equations is derived separ-

ately for three di�erent ¯ow regimes: liquid single-

phase ¯ow as well as two-phase ¯ow with bubbles or
plugs.
It is assumed that the bubbles have a spherical

shape, while plugs have a cylindrical body set between
two half spheres. The ``classical'' shape of elongated
Taylor bubbles, characterized by a spherical cap nose

and abruptly termination, could not be observed.
Bubbles showed much more tendency towards two
spherical caps, what is caused by a signi®cant stronger
in¯uence of the surface tension on the bubble shape in

tubes of small radius. The gaseous phase is supposed
to ¯ow concentric through the tube. (More compli-
cated two-dimensional approaches taking eccentric

¯ow into consideration gave similar results.)
These geometrical assumptions are basis for any cal-

culation. They were con®rmed by observation with a

CCD camera as illustrated in Figs. 3 and 4.
The liquid in LCVs is accelerated by the formation

and the growing of bubbles. The volume expansion of

existing bubbles is a result of pressure decrease during
the transient release process as well as mass transfer
from dissolved gases into the bubble. The experimen-

tally maximum observed Reynolds Number was in the
order of 10 which legitimizes the laminar approach:

@pL, f

@z
� 64

Re

rL

2
u 2

L

1

Dc

� 32nLrLuL

D 2
2

�10�

The equations of conservation can be solved by use of

this constitutive equation. To obtain the constitutive
equations for a TPCV, it is necessary to distinguish
between bubbly and plug ¯ow due to their di�erent

geometrical appearance. However, certain general de®-
nitions can be made:
Cross sectional averaged void fraction:

hei � D 2
G

D 2
c

�11�

Volume averaged void fraction:

e � 1

VTPCV

� � �
�TPCV�

dVG �12�

Finally, three velocities are de®ned: superseding,
volume averaged and maximum liquid velocity:

cj � �uG, j ÿ uL, j�1 � �13�

uL � ÿ c

1ÿ e
�14�

uL, max � ÿ c

1ÿ heimax

�15�

According to Fig. 5, an equation for the pressure
gradient is derived that acts on the complementary
phase.1

Fig. 3. Air plug inside a 8 mm, 458 inclined, water ®lled tube

(T = 208C, p = 1 bar, u3 8 cm/s).

Fig. 4. Air bubbles in a 8 mm, 458 inclined, water ®lled tube

(T = 208C, p = 1 bar, u3 10 cm/s).

1 This becomes obviously by calculation of local pressure

and neglecting the dynamic forces; p�z� � p0 ÿ�
z rLg sin a dzÿ rL

2 u
2
L �

� @ pL; f

@ z dz:
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@p�L�
@z
� @pG, f

@z
ÿ grGsin a �16�

@p�G�
@z
� @pL, f

@z
ÿ grLsin a �17�

The pressure loss resulting by non-ideal acceleration

of the liquid around the bubble is calculated by:�
@p

@z

�
acc

� Kacc
rL

2
�uL, j�1 ÿ uL, j �juL, j�1 ÿ uL, jj 1

L
�18�

The coe�cient Kacc was empirically determined and

has a value of 0.480 in the case of bubbly and 0.525 in
the case of plug ¯ow. For bubbly ¯ow, the drag force
on a spherical bubble is calculated with conventional

equations approximating the drag coe�cient diagrams
for a sphere and are given by Eq. (21).
During the sparkling experiments, described in detail

in Section 3, it was observed that the liquid passes the
bubble without remarkable wave formation in the
liquid ®lm. Based on this observation, a laminar

approach for the pressure loss in the liquid phase was
made and writes as Eq. (22):

@pG, f

@z
� cw

p
8
D 2

GrLc
2 1

pD 2
c L

�19�

@pL, f

@z
� 2ff

_m

DGrL

� 2ff
u 2

LrL

DG

�20�

with

cw �

8>>>>>>><>>>>>>>:

ReR0:5:
24

Re

0:5 < ReR1000: 0:4� 24

Re
� 24

Re 2

1000 < ReR10,000: 0:42
1000 < Re: 0:13

�21�

ff � 16

Re
�22�

The methodology for ®nding closing relationships in
the case of plug ¯ow is similar to the TPCV applied to
bubbly ¯ow. Di�erence is that the drag coe�cient for

the plug nose is assumed as constant (0.2). Similarly in
the case of bubbly ¯ow, it was experimentally observed
that the ®lm did not show remarkable protuberances

in form of surface waves on the interface. Insofar the
assumption of laminar ¯ow was extended to plug ¯ow.
For the calculation of the pressure loss in the liquid
®lm a laminar ®lm theory was developed as shown in

the following: in general, the pressure loss can be cal-
culated by balancing the forces, acting on a liquid ®lm
[2]:

�
@p

@z

�
f

� �t
i ÿ tw �PT

Ac

LLF

L
ÿ rLg sin a �23�

In Eq. (23), the length of the liquid ®lm (cylindrical
part) as well as the shear stress at the wall and on the

interface are unknown. In the case of laminar ¯ow, the
shear stress behaves linear over the ®lm thickness. This
o�ers an approach given by:

t�y� � C1y� C2 � Zlam

@uz

@y
�24�

Eq. (24) is integrated. Boundaries are de®ned by no-
slip condition at the wall and the interface and the

continuity of mass according to Eq. (7). As a result,
the shear stresses at the surface of bubble and wall as
well as the ®lm thickness are obtained.

Fig. 5. Force balance at a non-accelerated interface with negli-

gible mass exchange in a general formulation (neglecting of

the in¯uence of surface tension).

Fig. 6. Dimensionless velocity pro®les as a function of tube

inclination and a dimensionless ®lm thickness for a laminar

liquid ®lm.
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tw � t�y � 0� � Zlam

uG

d

�
1ÿ 3

d

�
Dc

2
� d

��
�25�

ti � t�y � d� � Zlam

uG

d

�
1� 3

d

�
Dc

2
� d

��
�26�

0 � ÿdj�3ÿ6uG, jnL

g sin a
dj ÿ 3

uG, jnLDc

g sin a
�27�

For illustration, a plot of velocities simulated for

di�erent tube inclinations is added in Fig. 6. The plot
requires Eq. (28), which allows to conclude the velocity
distribution:

u�y� �
�
3uG

d3

�
Dc

2
� d

��
y 2 � uG

d

�
1ÿ 3

d

�
Dc

2
� d

��
y

�28�
Since bubbles are expanding as result of pressure

decrease and gas di�usion into the bubble, there is a
requirement to de®ne a transition criterion between

bubbly and plug ¯ow: it is assumed that the transition
takes place, if the possibility for the existence of a
stable laminar ®lm occurs.

d�uG � > 1

2
�Dc ÿDG � �29�

The reached results were able to represent the exper-
imental data.

2.2. Di�usion model

HLMSs consist of a stagnant liquid column. This
liquid possibly contains solved gases, which were
absorbed from the surrounding at high pressure during
a long period of time. If, as an e�ect of a sudden drop

in the system pressure, it falls a certain degree below
the saturation pressure corresponding to the amount
of absorbed gas, bubbles nucleate and the liquid will

be supersaturated since the nucleation process demands
a speci®c non-equilibrium state of the solution. The
partial pressure of the gas component in the gas±liquid

interface will be naturally corresponding to the press-
ure inside the bubble. The local di�erence of the gas
mass concentration from the interface to a point in the
liquid, yields a di�usion mass ¯ux which in¯uences the

gas mass in the bubble.
This di�usion takes place in a complicated three-

dimensional ¯ow ®eld of the liquid. There is necessity

of simpli®cation to apply numerical treatment and
therefore the following assumptions are made: the
bubble shape follows the geometrical assumptions

made for the ¯ow model. Due to concentric ¯ow of a
bubble, a two-dimensional simulation of the local gas
mass concentration in the liquid phase is su�cient.

Mass transfer at the noses of a slug is neglected,
because the area is comparatively small, yielding a

very small absolute mass ¯ow. So, only the mass trans-
fer over the cylindrical part of the interface was taken
into consideration. In this ®lm region the velocity pro-

®le of the liquid is given by Eq. (28). In the case of
spherical bubbles, mass transfer by di�usion, is gener-
ally neglected. Paying respect to the mass transfer into

spherical bubbles did not show signi®cant di�erences
in the behavior of the water level but increased the
computational time enormously. A ®nal assumption

has to be made for the time dependence of the sol-
ution: if the liquid, that is displaced by a migrating
bubble, enters the ®lm in the cylindrical wall region
the gas mass concentration is supposed to be hom-

ogenous over the cross section (ideal mixing takes
place in the LCV). As a consequence of gas di�usion,
the concentration pro®le changes over the length coor-

dinate what yields that at the beginning the di�usion
mass ¯ux will be higher than at the end of a plug. In
general, as higher as the sectional cross-averaged liquid

velocity in the ®lm region is, as higher is the trans-
ferred mass ¯ux and as more homogenous is the gas
mass concentration pro®le at the end of the liquid ®lm

zone. The cause is that the velocity gradients on the
interface are higher and the time the liquid ¯ows in the
®lm region is shorter. If it is taken into consideration
that a new nucleated bubble accelerates but does not

further experience sudden changes in the rising vel-
ocity, a time independent simulation is valid.
With the above mentioned assumptions, an equation

of gas mass conservation as well as boundary con-
ditions for its solution can be formulated according to
Fig. 7.

Steady state mass balance for each gas component n:

u�y�@xG, n

@x
�DLG, n

 
@ 2xG, n

@y 2
� @

2xG, n

@x 2

!
� 0 �30�

Fig. 7. Segment of the laminar liquid ®lm. Basis for the deri-

vation of a mass balance for each gas component.
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requiring the following boundary conditions:

xG, n�x � LG, y� � xG, n, j�1 �31�

xG, n�x, y � d� � xequi, n�pG, T� �32�

@xG, n�x, y � 0�
@y

� 0 �33�

@xG, n�x � 0, y�
@x

� @xG, n�x � dx, y�
@x

�34�

The mass concentration at the equilibrium is calcu-
lated by the law of Henry. Here the pressure increase

due to the acting of surface tension was taken into
consideration:

x n, equi �
x n

�
pL � 4s

DB

�
KH, n�T� �35�

The molar concentration x can be converted into the
mass concentration x:

xn �
x nMnXN
j�1

x jMj

�36�

The concentration pro®les are solved for each
bubble at each global time step numerically. After con-

vergence is reached the di�usion mass transfer can be
integrated:

GLG, n � PcrL

�d
y�0

u�y��xn, j�1 ÿ xn�y�x�0
�

dy �37�

2.3. Nucleation model

During pressure release in the HLMS, the partial
pressure of the dissolved gases decreases proportional
to the system pressure but the mass of the gas in the

solution is constant. If the system pressure drops
below a certain value, the partial pressure of the gas
(or one component of it) will be higher than the satu-
ration pressure. The result is chemical non-equilibrium,

which might form a special degree or possibly cause
bubble formation. The mechanical structure of the
HLMS is considered as very complex so that there is

no information concerning the surface structure of
tubes or possible gas cavities in connectors. That is
why the proposed approach is based on the assump-

tion that there is no preferred place for nucleation
sites. The model is based on homogenous nucleation (a
possible underestimation of the pressure during a tran-

sient where ®rst bubbles occur did not found exper-
imental veri®cation as pointed out later).

The work for the formation of a single bubble is
available in the form of chemical energy by a partial
pressure that is higher than the saturation pressure.

This work is supposed to be equivalent to the negative
work required for the formation of a bubble and gov-
erned by the action of surface tension [5]:

Work to form a spherical bubble of radius rB:

DWB � ÿ4pr 2Bs �38�
Work available by dissolution of a sphere with

radius rB:

DWL � 4

3
pr3B�pi, L ÿ pi, L, equi � �39�

Comparison of these two equations yields the radius.
In the case of a two component gas it writes as fol-

lows:

rB, n � 3s
pL

0B@Kgradxn
1

Mn

�
x1
M1
� x2

M2
� �1ÿ x2 ÿ x2 �

ML

�

ÿ x n
pL

KH, n

1CA
ÿ1

n 2 1, 2

�40�
The coe�cient Kgrad was added to pay attention to

the form of concentration gradients in the liquid

phase, similar to the introduction of a Biot number for
heat transfer problems: the idea is to increase the dis-
solved volume arti®cially to take the amount of gas,

which is dissolved by the concentration gradients in

Fig. 8. Illustration for the introduction of a coe�cient, which

takes the dissolved gas due to gradients in the concentration

®eld into consideration.
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the liquid phase, into consideration. An illustration is
given in Fig. 8. The problem is simpli®ed to a calcu-

lation with two discreet concentration levels.
Furthermore, there is necessity to specify the number

of bubbles, which exist in dispersed form in a pre-

de®ned environment [4]. If it is considered that the
numbers of nucleation sites nB (and so the correspond-
ing void fraction e for standard conditions) is well

known, it can be extrapolated to arbitrary conditions
if real gas properties are neglected:

e � e0
p0T

pT0
�41�

With the assumption of spherical bubbles it follows
from Eq. (40):

nB, n � e0
p0, L

pL

TL

T0, L

3

4p

�
26643s
pL

264Kgradxn
1

Mn

�
x1
M1
� x2

M2
� �1ÿ x1 ÿ x2 �

ML

�

ÿ x n
pL

KH, n

375
ÿ1
3775
ÿ3

n 2 1, 2 �42�

A typical simulation of the number of nucleation
sites is given in Fig. 9. It can be seen clearly that the
system pressure has to fall signi®cantly under the

saturation pressure before ®rst nucleation occurs.
Further pressure decrease causes in a rapid increase of
nucleation sites with almost constant radius of the

formed bubble. This can be evaluated from Eq. (40).
From Eq. (38) it can be seen that the available work is

proportional to the pressure di�erence from the partial
to the saturation pressure as well as to rB

3 . The work
for bubble formation is proportional to the square of

the radius. This yields that the radius increases with
increasing pressure di�erence hyperbolically. So it
becomes obviously that a huge di�erence between the

partial and the saturation pressure results in less
nucleation sites but bubbles with a bigger radius where
a smaller di�erence in pressure forms a higher number

of bubbles with small radius. This is re¯ected in the
maximums of the curves in Fig. 9.

3. Experimental veri®cation

3.1. Sparkling experiments

In the ®rst series of experiments, the rising velocity
of spherical bubbles and plugs in pipes of di�erent in-

clination was investigated. An overview of the used
test facility is given in Fig. 10. The apparatus consists
of a storage tank (5) which was ®lled with degassed

water at ambient temperature (208C). The test tube (9)
was ¯ooded by use of the speed controlled pump (6).
After a pre-de®ned level had been reached, the shut-o�
valve (7) was closed and the air supply started. The air

compressor (1) pressurized the container (2) to damp
pressure ¯uctuations. The supplied pressure from the
container was reduced by the pressure control valve (3)

to adjust a suitable pressure upstream the control
valve (4) which controlled the gas ¯ow rate into the
mixing chamber (8). The mixing chamber consists of

an injection needle which is concentrically arranged in
the test tube. This needle has an inner diameter of 2
mm. The observation of bubbles was carried out by
use of the CCD camera (11). Obtained data were

Fig. 10. Equipment of the sparkling experiments.

Fig. 9. Nucleation sites for a solution of nitrogen N2 in water

with the saturation pressure as parameter T = 325 K. Kgrad

= 3.
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directly transferred to the data processing unit (12).

Stroboscopes (10) were used to improve the quality of
pictures. Data processing was carried out automati-
cally on a PC. A pattern, that de®nes the length scale

and was photographed before the experiments, was
used for comparison between the de®ned length scale

and the pictures of the bubbles recorded by the CCD
camera (11). The local velocity was calculated by div-
ision of the local-instantaneous measured positions of

the bubble nose and the time di�erence between two
frames.

Single as well as collective bubbles were investigated.
The bubbles had a range in diameter/length from 1 to

20. The tube was inclined at 158, 308, 458, 528 and 908
(measured form the horizontal line, according to
Fig. 1).

The obtained results as well as the theoretical predic-
tions are plotted in Table 1.

From Table 1, it can be seen that the rising vel-
ocities are in the order of 10 cm/s. They are strongly

dependent on the inclination angle of the tube and so
the e�ect of the gravitational force. In more inclined
tubes, bubbles migrate with slower rising velocity than

in tubes closer to the vertical line. There is a tendency
for a sinusoidal in¯uence of the inclination angle to

the rising velocity. This tendency is similar for any
bubble length and ®nds a logic explanation by Eq. (2).
However, an exception was observed in the case of

spherical bubbles rising in a vertical tube. Here the
reached velocities were slightly lower than for tubes

that were inclined certain degrees. The reason was
found in strong oscillations the bubbles showed. This
oscillations caused huge deformations of the surface

and so a higher resistance. This e�ect disappeared at
higher inclination angles and was only observed on

spherical bubbles. Detailed studies on the mechanism
as well as its simulation is the object of further investi-
gation.

Beside the in¯uence of the inclination angle, the
bubble length strongly alters the rising velocity. At a

diameter/length ratio of about 2, a signi®cant mini-
mum in the rising velocities was observed, independent
from the inclination angle. Smaller spherical as well as

larger elongated bubbles showed an increase in the
rising velocity.
Particularly the increase in the terminal velocity of

elongated bubbles is noteworthy. The mechanism can
be explained as follows: the geometric model for an
elongated bubble is a cylindrical body with two spheri-

cal shaped caps. This yields Eq. (43) for the cell's volu-
metric void fraction:

e � eT � D 2
G

D 2
c

�
1ÿ 1

3

DG

L

�
�43�

Eq. (43) is substituted in Eq. (5), which is written
for a steady state case:

0 � @

@z
�rGuGuG � � @pf, L

@z

� 1

D 2
G

D 2
c

�
1ÿ 1

3
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L

�"F i
f, LF

LAc

� GLG

AcL
�uL ÿ uG �

#

ÿ �rL ÿ rG �g sin a

�44�

With Eq. (44), it becomes obvious that a larger
bubble length L results in reduction of the third term
on the left-hand side representing the e�ect of the re-

sistance by friction and mass exchange. The limit of
this term for L41 is ®nite and so also the rising vel-
ocity seeks a maximum for a large value of L.

Table 1 also gives an overview of the rising velocities
which were numerically predicted. The simulations
were con®rmed by the experimentally reached data.

There is an average deviation of about 5% between ex-

Table 1

Comparison of experimental reached (EXP) and simulated (SIM) rising velocities as a function of bubble length and pipe inclina-

tiona

LCV

(mm)

158 308 458 528 908

EXP

(cm/s)

SIM

(cm/s)

EXP

(cm/s)

SIM

(cm/s)

EXP

(cm/s)

SIM

(cm/s)

EXP

(cm/s)

SIM

(cm/s)

EXP

(cm/s)

SIM

(cm/s)

5 (Bubble) 5.4 5.3 8.5 7.6 10.0 9.5 9.8 9.7 9.0 10.1

15 (Slug) 4.0 4.2 5.0 5.2 6.0 5.7 6.0 5.8 5.0 6.1

30 (Slug) 5.0 4.9 6.8 6.7 7.3 7.7 8.9 8.1 9.0 8.7

130 (Slug) 5.0 5.4 8.0 8.5 11.0 11.3 13.0 12.2 13.0 14.0

a p = 1 bar, T = 208C and Di = 8 mm.
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perimental and predicted data. Larger di�erences were
observed for spherical bubbles in tubes with low incli-

nation angle. However, the authors have the opinion
that the reason is the surface deformation mentioned
before.

3.2. Depressurization experiments

In the second series of experiments, the behavior of
a geometrically simpli®ed HLMS during a release of
the system pressure was investigated. The media were

water and air. The aim was to obtain information
about the course of the water level, the nucleation
pressure as well as occurring bubble sizes and rising
velocities.

The used apparatus, illustrated in Fig. 11, consists
of an inclined stainless steel test tube (9) with 8 mm
inner diameter and a length of 2000 mm. The tube is

equipped with a conductive sensor (5), which is applied
at the tube wall and able to detect gas accumulations
in the tube's cross-section. Parallel to the test tube,

there is the bypass line (10) installed. Before the exper-
iments, this tube had been ®lled with degassed water
to measure the di�erence pressure in the test tube (9)

by the di�erential pressure transducer (2). The system
pressure is measured by the pressure transducer (3).
The position of the water level as well as the rising vel-
ocity of bubbles was observed by the inductive needle

probes which are installed in a 1000 mm vertical exten-
sion of the testing tube. The electrical output of these
probes (4) as well as of the inductive sensor (5) were

transformed by the signal converter (20) and directly
transferred in the PC (21). For the experiments water

had to be enriched with air. Therefore, the enrichment

apparatus (15) was uncoupled from the test tube (9) by
closing the three-way-valves (70) and (14). The appar-
atus consists of a pressurized steel container of su�-

cient volume, which has connectors for air and water
supply. In the inner, a pipe with mesh screens have
been installed which is able to disperse supplied water

into drops with a size of a fraction of a millimeter.
The container is half-®lled with water. By use of the

air compressor unit (17), the pressure inside the con-
tainer was set to the aimed saturation pressure. This
process was controlled by the pressure control valve

(18) and the control valve (19). The water inside the
enrichment apparatus was circulated by the gear pump

(6). The gas-mixture was dissolved in the water since
water was continuously dispersed so that air could dif-
fuse inside the micro drops. After collecting at the con-

tainer bottom, it was re-circulated. The mass
concentration of oxygen was monitored by the mem-
brane-sensor (1). This sensor demands a constant mass

¯ow, which was realized by the ¯ow regulating valve
(16). By this procedure saturation pressure of 30, 50

and 70 bar have been realized. The corresponding dis-
solved gas mass concentrations were monitored by the
instrument (1). This way of enrichment was chosen

due to its reliability and simplicity. However, it cannot
avoid the smallest non-dissolvable gas bubbles remain-
ing in the liquid. These gas cavities were too small to

be detected either by the inductive sensor (5) or by the
needle probes (4). The fact that the amount of gas

which was released by the liquid during the pressure
transient was more than the whole amount the water
could theoretically contain have drawn the authors'

attention. To determine the amount of non-dissolved
gas, the liquid was carefully and slowly expanded to a
pressure still high compared to the nucleation pressure.

During this process eventually nucleating bubbles were
monitored by the inductive-sensor but could not be

determined. The needle probes observed the water
level. With the assumption of ideal gas behavior and
by neglecting of surface tension e�ects, the amount of

gas could be calculated from the expansion of the col-
umn, measured by the needle probes, and the system

pressure which was monitored by a pressure transdu-
cer. The results of this investigation are given in
Table 2.

After the aimed concentration level of dissolved gas
had been detected, the test tube was pressurized with

air from the compressor unit (17) by switching the
three-way-valve (14). This was necessary to avoid
uncontrolled bubble formation. With the gear pump

(6), the test tube was ¯ooded with enriched water from
the container (15) till a pre-de®ned water level was
reached. This level was monitored by the needle probes

(4). After the tube (9) had been uncoupled by switch-
ing the three-way-valves (7) and (11), a controlledFig. 11. Equipment of the depressurization experiments.
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expansion of the gas chamber over the water level was
realized by the adjustable ori®ce (13). The release pro-

cess was initiated by shut-o� valve (12). During the
release, the system pressure was continuously measured
by the pressure transducer (3).

Experiments were carried out for three saturation
pressure levels of 30, 50 and 70 bar. The gas release
was adjusted to time constants of 6, 12 and 36 s in the

case of an exponential approximation of the system
pressure course. The test tube was inclined for 158, 308
and 458.

3.2.1. Nucleation pressure
The nucleation pressure is de®ned as the pressure

level, where ®rst bubble formation is observed. It is the

authors' understanding that the process is dominated
by the pressure in ®rst order, which is also represented
in the proposed nucleation model.

So far there was no investigation concerning the in-
¯uence of other parameters for this process.
It is obviously di�cult to extract the information

when the ®rst nucleation occurs, because there is no
chance to observe the liquid in the tube over the full
length. So it was decided to de®ne the nucleation

pressure at that time, when the ®rst bubble will be
detected either by sensor (4) or (5). The authors are
aware to underestimate the nucleation pressure slightly
by this procedure. But since the transients are slow,

the induced error is small.
Observed and simulated values are given in Fig. 12.

It can be seen from Fig. 12 that the nucleation press-

ure is signi®cantly below the saturation pressure. The
ratio of these two values is in the order of 2/3. Fur-
thermore, it is obvious that the uncertainty of the ex-

perimentally reached values is large. There is no
tendency between the release velocity and the nuclea-
tion pressure. A good agreement for the prediction of
dimension by the simulations is to be seen. A more

detailed study of neglected parameters, which alter the
nucleation pressure, is the object of further investi-
gations.

3.2.2. Time dependency of the water level
The criterion, which probably is most dominant for

practical purpose, is the prediction of the time depen-
dency of the water level. The level changes due to
bubble formation and their expansion. In the follow-

ing, the general behavior as well as sensitivity to di�er-
ent parameters will be discussed.

In general, the water level is de®ned at the point
where the water column reaches the highest value in
the z-coordinate. In the case of experiments it was

determined by the use of the inductive needle probes.
From the time none of the sensors detected water or
temporarily gas (bubble), the level was supposed to be

higher than the position of this sensor. Vice versa, the
level was supposed to be lower if only gas was
detected. Since these needle sensors are installed at dis-

crete points, the water level is known at these point on
a determined time. Between these times it was linearly
interpolated. This linear interpolation results in a
smooth appearance of the level curves as it can be seen

in Figs. 13 and 15. In the case of simulation, the end
of the control volume of highest z-position determines
the water level. This value is well known at any time

and so there is no requirement for interpolation. If a
migrating bubble reaches the surface of the water col-
umn, i.e. the time when the LCV had been completely

displaced by the rising TPCV, it was de®ned that the
bubble was pushed out of the column immediately.
For the next time step, the level was reset to the suc-

ceeding LCV taking the amount of water which
remained in the TPCV into consideration. This simpli-
®cation is possible because the amount of water, which
a TPCV contains, is comparatively low. Furthermore,

any kind of foam formation was neglected due to the
same reason. So it is natural that the instantaneous
water level does not show the smooth appearance of

the experimentally obtained one. From the size of the
discontinuities in the course, the length of the pushed
out bubbles can be determined.

Fig. 12. Nucleation pressure, measured and simulation. The

wide range of uncertainty is obvious. The simulated data ®t

the expected dimension well.

Table 2

Experimentally determined amount of undissolved gas as a

function of saturation pressure

Saturation pressure in bar 30 50 70

Undissolved gas, speci®c (g/kg) 0.73 1.59 2.73
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In the ®rst set of depressurization experiments the
in¯uence of the inclination angle was investigated. The

obtained data are plotted in Fig. 13. It can be seen
clearly that the pressure in all three turns behaved ap-
proximately exponentially (a time constant was deter-

mined for about 13 s). The pressure dropped almost to
an atmospheric level after 70 s after the release. Refer-
ring to the axis on the right hand side the level course

for inclination angles of 158, 308 and 458 are plotted.
For the ®rst 25±30 s the levels increase independently
from the nucleation angle. The increase is exponen-

tially and a result of the expansion of micro bubbles.
The course of the three levels is similar which is an in-
dicator that the amount of bubbles which left the sys-
tem was small within these ®rst 25 s (the amount of

gas which was not dissolved is similar since it depends
only on the saturation pressure, as shown in Table 2).
This is natural since the supposed micro bubbles have

very slow rising velocity and nucleated bubbles had to
be accelerated. After a time period of about 30 s it can
be seen that the water level of the con®guration with

458 inclination does not show further increase and
keeps almost constant for about 30 s. After a short
time delay and at higher level maximum the courses of

the con®guration with 308 and 458 inclination angle
behaves similarly. In the case that generation of new
volume by nucleation and by expansion of existing
bubbles compensates the amount of gas which is con-

tinuously pushed out of the system, the formation of a
plateau in the level course is yielded. This plateau can
clearly be seen in Fig. 13. More inclined tubes cause

lower rising velocities of the bubbles and so the
amount of bubbles, which reached the surface of the
water column within a certain time, is lower. If the

amount of gas the system contains, is higher and the

pressure is only a function of time, it is clear that the
water level increases more as higher as the inclination

angle is. Furthermore, the whole course lasts longer
with increasing inclination due to slower rising vel-
ocities. After about 60 s, the pressure is still about at-

mospheric, the level decreases slowly since the balance
between bubble nucleation and expansion on the one-
hand-side and pushed out gas on the other-hand is in

non-equilibrium: more gas leaves the column which
yields a drop in the water level. This process is as
faster as lower the inclination angle is due to increas-

ingly rising velocities. This mechanism is represented
by the experiments and can be seen in Fig. 13.
The simulated experiments from Fig. 13 are plotted

in Fig. 14. A good agreement can be stated: short pla-

teaus and linear decreases follow an exponential
increase of the water levels. The approximate duration
of the increase is correctly modeled with about 30 s.

The reached maximums are slightly underestimated
but re¯ect the tendency that stronger inclination results
in higher values correctly. The duration of the courses

as well as their dependence from the inclination angle
of the tube is simulated correctly. Besides, it is note-
worthy that the released bubbles become larger with

increasing time (between 40 and 80 s). This is obvious
if the size of the discontinuities in the simulated level
course is noticed. Later pushed out bubbles remained
longer in the tube which increased the chance of co-

alescence vehemently. The result is plug formation,
which could also be represented by the experiments.
In the second set of depressurization experiments,

the in¯uence of a change in the release speed was
investigated. Therefore, a ®xed con®guration with an
458-inclined test tube was used. The pressure release

velocity was varied and the saturation pressure of the

Fig. 14. Simulated level course (like Fig. 13).

Fig. 13. Level as a function of time. Saturation pressure 30

bar. Pressure gradient with a time constant of T1 = 130. T =

293 K.
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dissolved gases was set constant at 30 bar. The reached

level courses are illustrated in Fig. 15.

The basic course of the water levels in Fig. 15 is

almost the same as in Fig. 13. A fast exponential

increase is followed by a plateau with ®nal (linear)

decrease. The expansion of the ¯uid columns in the

tube during the ®rst seconds varies since the velocity

of the system pressure release is di�erent. The reached

plateau values are obviously depending on the velocity

of the pressure release. Faster releases yield higher

peak values (N.B. that the basic water level of the fast-

est expansion in Fig. 15 had to be lowered in order to

avoid exceeding of the facility's limitations). A faster

expansion of the system pressure results in a higher

amount of nucleated expanding bubbles, which

explains that behavior. This might also be an expla-

nation that the plateaus seem to disappear with

increasing release speed. If the pressure drops sud-

denly, there is no time to develop equilibrium between

bubble formation/ expansion and bubble push out

since almost all solutes are degassed before larger

amounts of bubbles could migrate to the column's sur-

face.

In Fig. 16, it can also be seen that the simulated

dependency of the water level course from the velocity

of pressure release is represented by the experiments.

Increased plateau and decrease of the water levels as

well as their dependency on the pressure release speed

are simulated correctly. The maximum value is slightly

underestimated. The duration of the single processes

®ts the experimentally reached data well.

It can be stated that the simulations with the pro-

posed model could be veri®ed by the experimental

series. The obtained accuracy is good.

4. Conclusion

A one-dimensional ¯ow model is proposed for the
simulation of bubbly and plug ¯ow in thin tubes,
caused by the depressurization of gas-in-water sol-

utions. The model is based on geometrical assumptions
and is valid for junction-less tubing systems of arbi-
trary inclination. In addition, a bubble nucleation and

di�usion model describing the di�usion mass transfer
of dissolved gas from the liquid to the bubble, was
developed, which can be applied to liquid multi com-

ponent gas systems.
Separately, the validity of the proposed ¯ow models

for the bubble/plug migration was approved by a series

of sparkling experiments.
The evidence for the accurate interaction of the

three modules (the ¯ow, the nucleation and the di�u-
sion model) is given by nearly authentic representation

of the depressurization experiments. The prediction of
the onset of nucleation, i.e. the grade of non-equi-
librium, was calculated in the right dimension. Fur-

thermore, it is possible to conclude that the di�usion
model predicts the right order of mass exchange.
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